A novel bias correction methodology for climate impact simulations

نویسندگان

  • S. Sippel
  • F. E. L. Otto
  • M. Forkel
  • M. R. Allen
  • B. P. Guillod
  • M. Heimann
  • M. Reichstein
  • S. I. Seneviratne
  • K. Thonicke
  • M. D. Mahecha
چکیده

Understanding, quantifying and attributing the impacts of extreme weather and climate events in the terrestrial biosphere is crucial for societal adaptation in a changing climate. However, climate model simulations generated for this purpose typically exhibit biases in their output that hinder any straightforward assessment of impacts. To overcome this issue, various bias correction strategies are routinely used to alleviate climate model deficiencies, most of which have been criticized for physical inconsistency and the nonpreservation of the multivariate correlation structure. In this study, we introduce a novel, resampling-based bias correction scheme that fully preserves the physical consistency and multivariate correlation structure of the model output. This procedure strongly improves the representation of climatic extremes and variability in a large regional climate model ensemble (HadRM3P, climateprediction.net/weatherathome), which is illustrated for summer extremes in temperature and rainfall over Central Europe. Moreover, we simulate biosphere–atmosphere fluxes of carbon and water using a terrestrial ecosystem model (LPJmL) driven by the bias-corrected climate forcing. The resamplingbased bias correction yields strongly improved statistical distributions of carbon and water fluxes, including the extremes. Our results thus highlight the importance of carefully considering statistical moments beyond the mean for climate impact simulations. In conclusion, the present study introduces an approach to alleviate climate model biases in a physically consistent way and demonstrates that this yields strongly improved simulations of climate extremes and associated impacts in the terrestrial biosphere. A wider uptake of our methodology by the climate and impact modelling community therefore seems desirable for accurately quantifying changes in past, current and future extremes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

River discharge to the Baltic Sea in a future climate

This study reports on new projections of discharge to the Baltic Sea given possible realisations of future climate and uncertainties regarding these projections. A high-resolution, pan-Baltic application of the Hydrological Predictions for the Environment (HYPE) model was used to make transient simulations of discharge to the Baltic Sea for a mini-ensemble of climate projections representing tw...

متن کامل

A trend-preserving bias correction -- the ISI-MIP approach

This discussion paper is/has been under review for the journal Earth System Dynamics (ESD). Please refer to the corresponding final paper in ESD if available. Abstract Statistical bias correction is commonly applied within climate impact modeling to correct climate model data for systematic deviations of the simulated historical data from observations. Methods are based on transfer functions ge...

متن کامل

Climate model bias correction and the role of timescales

It is well known that output from climate models cannot be used to force hydrological simulations without some form of preprocessing to remove the existing biases. In principle, statistical bias correction methodologies act on model output so the statistical properties of the corrected data match those of the observations. However, the improvements to the statistical properties of the data are ...

متن کامل

Improved Arctic sea ice thickness projections using bias-corrected CMIP5 simulations

Projections of Arctic sea ice thickness (SIT) have the potential to inform stakeholders about accessibility to the region, but are currently rather uncertain. The latest suite of CMIP5 global climate models (GCMs) produce a wide range of simulated SIT in the historical period (1979–2014) and exhibit various biases when compared with the Pan-Arctic Ice–Ocean Modelling and Assimilation System (PI...

متن کامل

Influences of increasing temperature on Indian wheat: quantifying limits to predictability

As climate changes, temperatures will play an increasing role in determining crop yield. Both climate model error and lack of constrained physiological thresholds limit the predictability of yield. We used a perturbed-parameter climate model ensemble with two methods of bias-correction as input to a regional-scale wheat simulation model over India to examine future yields. This model configurat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016